怎樣解析完整的ThreadPoolExecutor,針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
創新互聯堅持“要么做到,要么別承諾”的工作理念,服務領域包括:做網站、成都網站設計、企業官網、英文網站、手機端網站、網站推廣等服務,滿足客戶于互聯網時代的全州網站設計、移動媒體設計的需求,幫助企業找到有效的互聯網解決方案。努力成為您成熟可靠的網絡建設合作伙伴!
今天為了給一個朋友做一份文檔,從源碼層級解析一下ThreadPoolExecutor。然后就直接在源碼上寫備注的形式解析。
// 1. `ctl`,可以看做一個int類型的數字,高3位表示線程池狀態,低29位表示worker數量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 2. `COUNT_BITS`,`Integer.SIZE`為32,所以`COUNT_BITS`為29
private static final int COUNT_BITS = Integer.SIZE - 3;
// 3. `CAPACITY`,線程池允許的最大線程數。1左移29位,然后減1,即為 2^29 - 1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 4. 線程池有5種狀態,按大小排序如下:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// 5. `runStateOf()`,獲取線程池狀態,通過按位與操作,低29位將全部變成0
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 6. `workerCountOf()`,獲取線程池worker數量,通過按位與操作,高3位將全部變成0
private static int workerCountOf(int c) { return c & CAPACITY; }
// 7. `ctlOf()`,根據線程池狀態和線程池worker數量,生成ctl值
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
// 8. `runStateLessThan()`,線程池狀態小于xx
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
// 9. `runStateAtLeast()`,線程池狀態大于等于xx
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
// 基本類型參數校驗
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
// 空指針校驗
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
// 根據傳入參數`unit`和`keepAliveTime`,將存活時間轉換為納秒存到變量`keepAliveTime `中
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
// worker數量比核心線程數小,直接創建worker執行任務
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// worker數量超過核心線程數,任務直接進入隊列
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 線程池狀態不是RUNNING狀態,說明執行過shutdown命令,需要對新加入的任務執行reject()操作。
// 這兒為什么需要recheck,是因為任務入隊列前后,線程池的狀態可能會發生變化。
if (! isRunning(recheck) && remove(command))
reject(command);
// 這兒為什么需要判斷0值,主要是在線程池構造方法中,核心線程數允許為0
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 如果線程池不是運行狀態,或者任務進入隊列失敗,則嘗試創建worker執行任務。
// 這兒有3點需要注意:
// 1. 線程池不是運行狀態時,addWorker內部會判斷線程池狀態
// 2. addWorker第2個參數表示是否創建核心線程
// 3. addWorker返回false,則說明任務執行失敗,需要執行reject操作
else if (!addWorker(command, false))
reject(command);
}
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
// 外層自旋
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 這個條件寫得比較難懂,我對其進行了調整,和下面的條件等價
// (rs > SHUTDOWN) ||
// (rs == SHUTDOWN && firstTask != null) ||
// (rs == SHUTDOWN && workQueue.isEmpty())
// 1. 線程池狀態大于SHUTDOWN時,直接返回false
// 2. 線程池狀態等于SHUTDOWN,且firstTask不為null,直接返回false
// 3. 線程池狀態等于SHUTDOWN,且隊列為空,直接返回false
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
// 內層自旋
for (;;) {
int wc = workerCountOf(c);
// worker數量超過容量,直接返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 使用CAS的方式增加worker數量。
// 若增加成功,則直接跳出外層循環進入到第二部分
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 線程池狀態發生變化,對外層循環進行自旋
if (runStateOf(c) != rs)
continue retry;
// 其他情況,直接內層循環進行自旋即可
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
// worker的添加必須是串行的,因此需要加鎖
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 這兒需要重新檢查線程池狀態
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// worker已經調用過了start()方法,則不再創建worker
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// worker創建并添加到workers成功
workers.add(w);
// 更新`largestPoolSize`變量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 啟動worker線程
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
// worker線程啟動失敗,說明線程池狀態發生了變化(關閉操作被執行),需要進行shutdown相關操作
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
// 這兒是Worker的關鍵所在,使用了線程工廠創建了一個線程。傳入的參數為當前worker
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// 省略代碼...
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
// 調用unlock()是為了讓外部可以中斷
w.unlock(); // allow interrupts
// 這個變量用于判斷是否進入過自旋(while循環)
boolean completedAbruptly = true;
try {
// 這兒是自旋
// 1. 如果firstTask不為null,則執行firstTask;
// 2. 如果firstTask為null,則調用getTask()從隊列獲取任務。
// 3. 阻塞隊列的特性就是:當隊列為空時,當前線程會被阻塞等待
while (task != null || (task = getTask()) != null) {
// 這兒對worker進行加鎖,是為了達到下面的目的
// 1. 降低鎖范圍,提升性能
// 2. 保證每個worker執行的任務是串行的
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
// 如果線程池正在停止,則對當前線程進行中斷操作
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
// 執行任務,且在執行前后通過`beforeExecute()`和`afterExecute()`來擴展其功能。
// 這兩個方法在當前類里面為空實現。
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
// 幫助gc
task = null;
// 已完成任務數加一
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 自旋操作被退出,說明線程池正在結束
processWorkerExit(w, completedAbruptly);
}
}
關于怎樣解析完整的ThreadPoolExecutor問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注創新互聯行業資訊頻道了解更多相關知識。
網頁題目:怎樣解析完整的ThreadPoolExecutor
網站地址:http://newbst.com/article20/ijphco.html
成都網站建設公司_創新互聯,為您提供品牌網站建設、電子商務、品牌網站制作、標簽優化、網站建設、網站排名
聲明:本網站發布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創新互聯